Homogeneous riemannian manifolds of non-positive sectional curvature

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemannian Manifolds with Positive Sectional Curvature

It is fair to say that Riemannian geometry started with Gauss’s famous ”Disquisitiones generales” from 1827 in which one finds a rigorous discussion of what we now call the Gauss curvature of a surface. Much has been written about the importance and influence of this paper, see in particular the article [Do] by P.Dombrowski for a careful discussion of its contents and influence during that time...

متن کامل

Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds

For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.

متن کامل

Examples of Riemannian Manifolds with Non-negative Sectional Curvature

Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S × S, also fit into this subject. For non-negatively curved manifolds, there are a number of obs...

متن کامل

Curvature Homogeneous Pseudo-riemannian Manifolds Which Are Not Locally Homogeneous

We construct a family of balanced signature pseudo-Riemannian manifolds, which arise as hypersurfaces in flat space, that are curvature homogeneous, that are modeled on a symmetric space, and that are not locally homogeneous.

متن کامل

Compact Riemannian Manifolds with Positive Curvature Operators

M is said to have positive curvature operators if the eigenvalues of Z are positive at each point p € M. Meyer used the theory of harmonic forms to prove that a compact oriented n-dimensional Riemannian manifold with positive curvature operators must have the real homology of an n-dimensional sphere [GM, Proposition 2.9]. Using the theory of minimal two-spheres, we will outline a proof of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae (Proceedings)

سال: 1963

ISSN: 1385-7258

DOI: 10.1016/s1385-7258(63)50005-5